notación científica

La notación científica (o notación índice estándar) es una manera rápida de representar un número utilizando potencias de base diez. Esta notación se utiliza para poder expresar fácilmente números muy grandes o muy pequeños.
Los números se escriben como un producto:
a \times 10^n\,
siendo:
a\, un número entero o decimal mayor o igual que 1 y menor que 10, que recibe el nombre de coeficiente.
n\, un número entero, que recibe el nombre de exponente u orden de magnitud.
La notación científica utiliza un sistema llamado coma flotante, o de punto flotante en países de habla inglesa y en algunos hispanohablantes.

Escritura 
  • 100 = 1
  • 101 = 10
  • 102 = 100
  • 103 = 1 000
  • 104 = 10 000
  • 105 = 100 000
  • 106 = 1 000 000
  • 107 = 10 000 000
  • 108 = 100 000 000
  • 109 = 1 000 000 000
  • 1010 = 10 000 000 000
  • 1020 = 100 000 000 000 000 000 000
  • 1030 = 1 000 000 000 000 000 000 000 000 000 000
10 elevado a una potencia entera negativa –n es igual a 1/10n o, equivalentemente 0, (n–1 ceros) 1:
  • 10–1 = 1/10 = 0,1
  • 10–2 = 1/100 = 0,01
  • 10–3 = 1/1 000 = 0,001
  • 10–9 = 1/1 000 000 000 = 0,000 000 001
Por tanto, un número como: 156 234 000 000 000 000 000 000 000 000 puede ser escrito como 1,56234×1029,
y un número pequeño como 0,000 000 000 000 000 000 000 000 000 000 910 939 kg (masa de un electrón) puede ser escrito como 9,10939×10–31kg.

Uso 

Por ejemplo, la distancia a los confines observables del universo es 4,6×1026 m y la masa de un protón es 1,67×10-27kg. La mayoría de las calculadoras y muchos programas de computadora presentan resultados muy grandes y muy pequeños en notación científica; la base 10 se omite generalmente y se utiliza la letra E (mayúscula o minúscula) para indicar el exponente; por ejemplo: 1,56234E29. Nótese que esto no está relacionado con la base del logaritmo natural también denotado comúnmente con la letra e.
La notación científica es altamente útil para anotar cantidades físicas, pues pueden ser medidas solamente dentro de ciertos límites de error y al anotar sólo los dígitos significativos se da toda la información requerida de forma concisa.
Para expresar un número en notación científica debe expresarse en forma tal que contenga un dígito (el más significativo) en el lugar de las unidades, todos los demás dígitos irán entonces después del separador decimal multiplicado por la potencia de 10 que indique el exponente. Ejemplos: 238 294 360 000 = 2,3829436E11 y 0,00031416 = 3,1416E-4.

Operaciones matemáticas con notación científica

Suma y resta

Siempre que las potencias de 10 sean las mismas, se deben sumar los coeficientes (o restar si se trata de una resta), dejando la potencia de 10 con el mismo grado. En caso de que no tengan el mismo exponente, debe convertirse el coeficiente, multiplicándolo o dividiéndolo por 10 tantas veces como se necesite para obtener el mismo exponente.
Ejemplo:
2×105 + 3×105 = 5×105
3×105 - 0.2×105 = 2.8×105
2×104 + 3 ×105 - 6 ×103 = (tomamos el exponente 5 como referencia)
= 0,2 × 105 + 3 × 105 - 0,06 ×105 = 3,14 ×105

Multiplicación

Para multiplicar cantidades escritas en notación científica se multiplican los coeficientes y se suman los exponentes.
Ejemplo:
(4×1012)×(2×105) =8×1017

 División

Para dividir cantidades escritas en notación científica se dividen los coeficientes y se restan los exponentes.
Ejemplo: (48×10-10)/(12×101) = 4×10-11

Potenciación

Se eleva el coeficiente a la potencia y se multiplican los exponentes.
Ejemplo: (3×106)2 = 9×1012.

Radicación

Se debe extraer la raíz del coeficiente y se divide el exponente por el índice de la raíz.
Ejemplos:
\sqrt{9\cdot 10^{26}} = 3\cdot 10^{13}
\sqrt[3]{27\cdot 10^{12}} = 3\cdot 10^{4}
\sqrt[4]{256\cdot 10^{64}} = 4\cdot 10^{16}

 





No hay comentarios:

Publicar un comentario en la entrada

Nota: solo los miembros de este blog pueden publicar comentarios.